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We report a facile alkylation–cyclization reaction involving the isoindolinone C3 position, which resulted
in tricyclic derivatives 2 and 10 in 48% and 32% yields, respectively. These novel compounds possess
potent urotensin-II receptor antagonist activity.
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Urotensin-II (U-II) cyclic peptides and their cell-surface receptor
(UT) are intimately involved in cardiorenal diseases,1 such as
hypertension,2 heart failure,3 and chronic renal failure.4 The U-II
receptor is a member of the G-protein-coupled receptor (GPCR)
superfamily and is expressed in a wide range of tissues.1 Thus,
we have been vigorously pursuing U-II receptor antagonists as
potential therapeutic agents.5
(JNJ-39319202)
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Our studies led to a key series of nonpeptide U-II antagonists
containing a central isoindolinone subunit, such as 1, which exhib-

ited single-digit nanomolar potency in U-II receptor functional and
binding assays.5c Since various isoindolinone derivatives possess
diverse biological properties,6 and isoindolinones are substructures
of some natural products,7 this ring system is inherently interest-
ing. In prospecting for useful compounds analogous to 1, we
encountered a facile alkylation–cyclization reaction involving the
isoindolinone C3 position, which yielded novel tricyclic derivatives
ll rights reserved.
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with potent U-II receptor antagonist activity (e.g., 2). Herein, we re-
port on this useful chemical conversion and this novel U-II antag-
onist chemotype.

We reacted 3, obtained from 4-benzyloxybutanoic acid and
MeNHOMe, with 3,4-dimethoxyphenylmagnesium bromide and
reductively aminated the ketone product enantioselectively to give
4 (95% ee) (Scheme 1).8,9 Amine 4 was condensed with bromo ester
5 to give 6. The chloro group in 6 was displaced with N-ethylpiper-
azine and the benzyl group was removed to give 7. Compound 7
was converted to iodide 8a, which was viewed as a precursor to al-
kene 9. However, treatment of 8a with NaO-t-Bu (1 h, 60 �C) not
only provided 9 (46%), but also generated a significant amount
(33%) of another product (Scheme 2), which was identified as tricy-
cle 2 (a benzoindolizidinone) by NMR spectroscopy.10 Thus, there
was a competing reaction involving deprotonation of the C3 posi-
tion of the isoindolinone to form a transient carbanion that under-
went cyclization. Notably, we were able to completely shift the
reaction in favor of tricycle 2 by employing mesylate 8b as the sub-
strate. Thus, treatment of 8b with NaO-t-Bu under the same condi-
tions afforded 2 in 48% yield.11

We investigated the application of this chemical process to
other ring sizes. To obtain the 7-membered system, 10, by alkyl-
ation–cyclization, we synthesized mesylate 11 by the chain-exten-
sion protocol as depicted in Scheme 3.12 Treatment of 11 with
NaO-t-Bu under the same conditions afforded 10 in 32% yield.13

For the 5-membered system, 14, we synthesized precursor mesy-
late 15 by the route presented in Scheme 4.14 However, exposure
of 15 to NaO-t-Bu at reflux did not produce any of desired 14 (a
pyrroloisoindolinone); only decomposition was observed. The
same reaction at 23 �C for 24 h just gave a minor amount of alkene
18.15 The failure of 15 to undergo alkylation–cyclization may be re-
lated to ring strain that develops in the transition state for carban-
ion attack on the carbon bearing the mesylate en route to the 6,5,5
tricyclic skeleton.
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A possible explanation for the high diastereocontrol in the
alkylation–cyclization relates to comparative steric interactions,
as depicted in Figure 1. The intermediate benzylic carbanion can
react via pathway A or B, but the latter is strongly disfavored be-
cause of its A(1,3)-type steric strain.16 Thus, 2 is formed exclusively
over the alternative diastereomer.

Carbon–carbon bond formation at the C3 position of isoindoli-
nones has attracted synthetic interest7a,d,17 since two early reports
were published in 1998.18 Luzzio and Zacherl were able to execute
alkylation–cyclization reactions to obtain 6,5,6 (benzoindolizidi-
none) and 6,5,5 (pyrroloisoindolinone) tricyclic systems.18b How-
ever, in their case the C3 position was substituted with a PhSO2

group, which would strongly stabilize the carbanion, and the alkyl-
ation electrophile was an a,b-unsaturated ester. Moreau et al.7d

also carried out alkylation–cyclization reactions, but with a ben-
zyne-based electrophile. As far as we are aware, our reactions rep-
resent the first indolinone C3 alkylation–cyclization involving a
simple alkyl group that bears a halide or sulfonate ester leaving
group.
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Figure 1. Mechanistic proposal for diastereoselectivity.
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Urotensin-II antagonist activity was assessed for 2 and 10 by
using CHO-K1 cells transfected with rat U-II receptor and a
FLIPR-based assay that measures intracellular calcium flux.5a,19

Thus, we obtained potent Ki values of 6.3 and 34 nM for 2 and
10, respectively. For comparison, alkene 13 had a rat FLIPR Ki value
of 9 nM. Compound 2 was also examined for binding to human U-II
receptors20 and for the inhibition of human U-II functional activity
in a FLIPR-based assay that measures intracellular calcium flux.20,21

Thus, we obtained Ki values of 64 nM for binding and 390 nM for
functional antagonism.

In summary, we have identified a facile and useful alkylation–
cyclization reaction involving the isoindolinone C3 position, which
resulted in tricyclic derivatives 2 and 10. An attempt to synthesize
the corresponding 6,5,5-system, 14, was unsuccessful. Novel com-
pounds 2 and 10 were found to display potent U-II receptor antag-
onist activity.
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